ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA

Nome	Comp	leto
Nome	Comp	leto

Bilhete de Identidade n.º Emitido em (Localidade)

Assinatura do Estudante

Não escrevas o teu nome em mais nenhum local da prova

A PREENCHER PELO PROFESSOR CLASSIFICADOR

Classificação em percentagem % (por cento)
Correspondente ao nível ()	Data
Assinatura do Professor Classificador	
Assinatura do Encarregado de Educação	

Prova Escrita de Matemática

3.º Ciclo do ensino Básico

Duração da Prova: 90 minutos Versão 1

2009

- Podes utilizar a máquina de calcular com que habitualmente trabalhas.
- O último item do teste (item 13.) é o único em que podes utilizar material de desenho e de medição. Este item deve ser resolvido, a lápis, no enunciado.
- O teste inclui seis itens de escolha múltipla.

Em cada um deles, são indicadas quatro alternativas de resposta, das quais só uma está correcta. Deves assinalar a alternativa correcta, com um **X** para responder ao item e apresentar todos os cálculos e justificações.

- O teste inclui, na página 2, um formulário.

Formulário

Números

Valor aproximado de π (pi): 3,14159

Geometria

Perímetro do círculo: $2 \pi r$, sendo r o raio do círculo

Áreas

Paralelogramo: $base \times altura$

Losango: $\frac{diagonal\ maior \times\ diagonal\ menor}{2}$

Trapézio: $\frac{base\ maior +\ base\ menor}{2} \times\ altura$

Polígono regular: $apótema \times \frac{perímetro}{2}$

Círculo: π r^2 , sendo r o raio do círculo

Superfície esférica: $4 \pi r^2$, sendo r o raio da esfera

Volumes

Prisma e cilindro: área da base \times altura

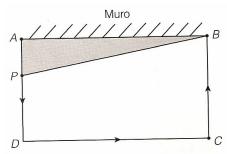
Pirâmide e cone: $\frac{1}{3}$ área da base \times altura

Esfera: $\frac{4}{3} \pi r^3$, sendo r o raio da esfera

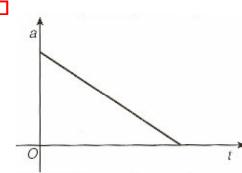
Álgebra

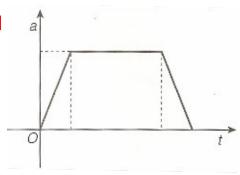
Fórmula resolvente de uma equação do segundo grau

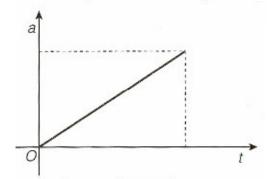
da forma $ax^{2} + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

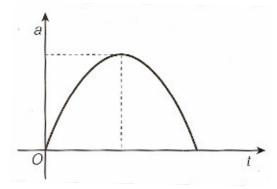

Trigonometria

Fórmula fundamental: $sen^2 x + cos^2 x = 1$


Relação da tangente com o seno e o co-seno: $tgx = \frac{senx}{cos \ x}$


1.	Considera o conjunto: $A =$	$=[-\pi ; +\infty[$		
1	.1. Qual dos seguintes núr as justificações ne		o A? Apresenta todos os cálc	ulos que efectuares e todas
	$-31,4\times10^{-1}$	□ -31,4×10	\Box -3,1416×10 ⁰	\Box -31,42 ÷ 10
Resol	lução e justificação:			
1	.2. Qual das quatro igualo todas as justificaçã		erdadeira? Apresenta todos os	s cálculos que efectuares e
[$4;+\infty[$	$\square A = [-\pi ; \pi[\cap] - 3]$	•
		$4;+\infty[$	$\square A = [-\pi ; \pi[\cup] - 1]$	$3,15;+\infty[$
Resol	lução e justificação:			
	seguintes:		número das suas casas pode Número da casa da Joana: 35	
•	_	em em números diferentes		
		mero 9 e a Joana vive no n	, ,	mcaçao.
	A Maria e a Joana vive			
	☐ Nenhuma das opções	anteriores é correcta.		
		2((m. 5) m. 4	
3.	O menor número inteiro q	ue satisfaz a condição — 20	$\frac{(x-3)}{3} + \frac{x+4}{2} < 1$ é:	
	☐ 26 Resolução: ☐ -26			
	□ 27			
	□ 25			
4.	Considera a equação: x^2	-x+9=15 Res	solução:	
	A equação é impossív			
	O conjunto-solução da	1 , , ,		
	☐ A equação tem uma s☐ O conjunto-solução da			


5. Na figura está representado um terreno rectangular [ABCD], cercado por um muro, num lado, e por uma estrada, nos restantes três lados.

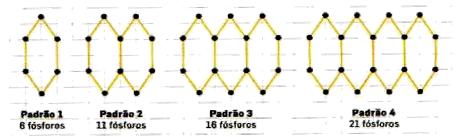


Um cão, que na figura está representado pelo ponto P, vai percorrer a estrada numa velocidade constante, partindo do ponto A, seguindo o percurso sugerido pelas setas, até ao ponto B. Qual dos gráficos seguintes representa melhor a área do triângulo [ABP], em função do tempo t, contando a partir do instante em que o cão inicia o movimento?

Justificação:

6. Alguns alunos da turma da Maria combinaram alugar um autocarro para fazerem uma viagem por alguns distritos do nosso país. O preço do aluguer do autocarro é o mesmo, qualquer que seja o número de pessoas transportadas. Inicialmente, apenas 12 alunos quiseram participar nesta iniciativa. Assim, cada um pagaria

No final da viagem, verificou-se que cada um dos participantes pagou 27€. Quantos alunos, afinal, participaram na viagem?


20

 \square 25

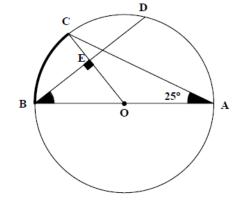
30

7. Considera os seguintes padrões feitos com fósforos.

7.1. Quantos fósforos são necessários para executar o padrão 10? **Explica como chegaste à resposta. Resolução e justificação:**

7.2. Escreve uma expressão que permita determinar o números de fósforos, f necessários à execução de cada padrão, n.

Resolução:


7.3. Se forem usados 151 fósforos qual é o número do padrão? Apresenta todos os cálculos que efectuares. Resolução e justificação:

8. Na figura está representada uma circunferência, de centro **O**, em que:

- A, B, C e D são pontos da circunferência;
- O segmento de recta [AB] é um diâmetro;
- E é o ponto de intersecção das rectas OC e BD;
- O triângulo [BOE] é rectângulo em E;

$$- B \hat{A} C = 25^{\circ}$$

8.1. Determina a amplitude do arco BC. **Apresenta todos os cálculos que efectuares.**

Resolução e justificação:

8.2. Determina, em graus, a amplitude do ângulo OCA e do ângulo ABD. **Resolução e justificação:**

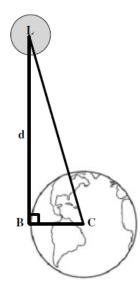
- 9. Uma instituição, com base numa ideia do astronauta norte-americano Edwin Aldrin desenvolveu um projecto para levar turistas ao espaço. Para que o projecto fosse viável, a instituição promoveu um sorteio e vendeu bilhetes; 90 000 foram vendidos na Península Ibérica, o equivalente a 22,5%; os restantes foram vendidos nos outros países da União Europeia.
 - **9.1.**Calcula a probabilidade, **em percentagem**, da empresa portuguesa "Astrolábio" ganhar uma dessas viagens, uma vez que comprou 10 000 bilhetes. Indica todos os cálculos que efectuares.

Resolução e justificação:

9.2. Que quantidade de bilhetes teriam de ser comprados em Portugal pela referida empresa, para que a probabilidade de ganhar a viagem fosse de $\frac{1}{5}$?

Resolução e justificação:

- 10. A empresa "Astrolábio", ao comprar bilhetes para o sorteio, verificou que o preço de cada bilhete variava de país para país. Um bilhete, em Espanha, custava a quarta parte do bilhete, vendido em Portugal. Se comprasse quatro bilhetes, dois de cada país, pagava na totalidade, 600€.
 - 10.1. Designando por x o preço de um bilhete em Portugal e por y o preço de um bilhete em Espanha, escreve um sistema de equações que traduza o problema apresentado.Resolução:
- 10.2. Verifica que o preço de cada bilhete em Portugal e em Espanha custa 240€ e 60€, respectivamente.
 Apresenta todos os cálculos que efectuares.
 Resolução e conclusão:


10.3. Ao consultar o preço dos bilhetes nos diferentes países da União Europeia, a referida empresa verificou que o custo médio dos bilhetes vendidos em Portugal, Espanha e França e Holanda era de 130€. Quanto custava, um bilhete em França, sabendo que o preço dos bilhetes na Holanda e França era o mesmo? Apresenta todos os cálculos que efectuares.

Resolução e justificação:

- 11. Observa a seguinte imagem onde está representada a Terra e a Lua. Um observador, na Terra, colocado no ponto $\bf B$ vê a Lua ($\bf L$), no horizonte. Sabe-se que:
 - o raio da Terra $\overline{CB} \approx 6400 \, km$;
 - o raio da Lua $\approx 1700 \, km$.
 - $B\stackrel{\wedge}{L}C = 1^{\circ}$
 - 11.1. Determina a distância do observador ao centro da Lua: \overline{BL} . Apresenta o resultado em notação científica.

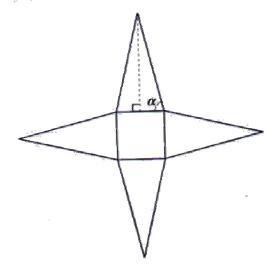
Os valores aproximados das razões trigonométricas do ângulo de 1º são apresentados na tabela seguinte:

sen 1º	cos 1º	tg 1º
0,02	1	0,02

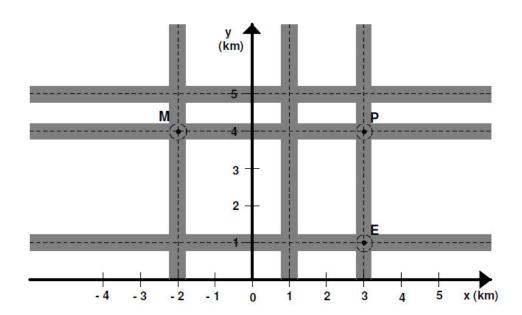
Resolução:

12. Na figura está representada uma vela decorativa coma a forma de uma pirâmide recta, quadrangular regular. A vela é constituída por quatro camadas de cera de cores diferentes e todas coma a mesma altura.

Sabe-se que: - a vela tem 12 cm de altura; - a área da base é $36 cm^2$,

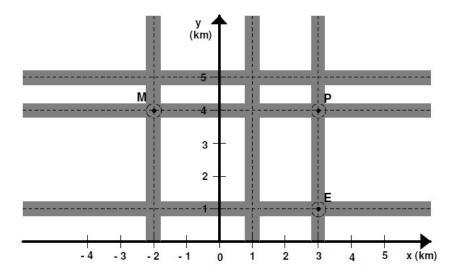

12.1. Determina a quantidade de cera verde que há na vela, em centímetros cúbicos, antes desta começar a arder.

Resolução e resposta:



12.2. A seguir está representada uma planificação de uma pirâmide com as mesmas dimensões da vela. **Determina**, com duas casas decimais. **o valor do ângulo** α .

Resolução e resposta:


13. A figura seguinte apresenta parte do plano de uma cidade. O ponto **P** representa a piscina Municipal, o ponto **E** a escola e o ponto **M** a casa da Maria. A unidade de comprimento é o quilómetro (km).

13.1. Recorrendo a material de medição e desenho representa por **B**, a localização exacta da Biblioteca Municipal uma vez que se situa à mesma distância da casa da Maria (M) e da escola (E), ficando a 3km da Piscina (P). **Explica como procedeste.**

Resolução:

13.2. Os pais da Maria deixam-na andar sozinha no triângulo cujos vértices são os pontos P,M e E. No entanto não a deixam andar numa zona desabitada situada na rotação do triângulo [MPE] com centro no ponto de coordenadas (-2; 0) com um ângulo de -50°. Assinala a lápis essa zona.

